مقایسه روش های شبکه عصبی مصنوعی و رگرسیون چندگانه در برآورد تبخیر از تشت و تعیین مهم ترین عوامل هواشناسی موثر به روش تحلیل مولفه های اصلی
نویسندگان
چکیده
میزان تبخیر از تشت یکی از عوامل بسیار مهم در برنامه ریزی منابع آب، مدیریت آبیاری و تولیدات زراعی میباشد.. بسیاری از ایستگاه های هواشناسی کشور فاقد آمار طولانی مدت و همگن تبخیر از تشت می باشند. لذا مدلهای تجربی مختلفی به منظور برآورد این کمیت مورد استفاده قرار می گیرد. هدف از انجام این تحقیق، برآورد تبخیر از تشت در چهار ایستگاه سینوپتیک کرج، اهواز، شیراز و تبریز در بازه زمانی 1986 تا 2005 با استفاده از دو روش شبکه عصبی مصنوعی (artificial neural network) و رگرسیون چندگانه (multiple regression) و مشخص نمودن مهمترین متغیرهای تاثیرگذار بر تبخیر از تشت در ایستگاه های مطالعاتی با استفاده از روش تحلیل مولفه های اصلی(principal factors analysis)میباشد. در این رابطه، دادههای تبخیر از تشت، دمای بیشینه و کمینه، سرعت باد، رطوبت نسبی و ساعات آفتابی مورد تجزیه و تحلیل قرار گرفت. نتایج حاصل از روش آنالیز مولفه های اصلی(pca) نشان داد در ایستگاه اهواز 90 درصد، ایستگاه تبریز 91 درصد و در ایستگاه شیراز 93 درصد از تغییرات تبخیر از تشت بر اساس ساعات آفتابی، سرعت باد و دمای حداکثر و حداقل قابل توجیه است. ولی در ایستگاه کرج، تعیین موثرترین عوامل بر تبخیر از تشت با روش pca عملی نبوده است. نتایج روش شبکه عصبی مصنوعی نشان داد که مقادیر برآوردی با مقادیر مشاهداتی تطابق مناسبی داشتند، به طوری که در ایستگاه های اهواز، شیراز و تبریز مقدار ضریب تبیین(r2) برابر 81/0 و در ایستگاه کرج 88/0 و مقدار rmse برای ایستگاه های اهواز، شیراز و تبریز 2/0 میلی متر و برای ایستگاه کرج 1/0 میلیمتر می باشد. همچمین مقدار mae برای ایستگاه های کرج، اهواز، شیراز و تبریز به ترتیب برابر 83/3، 6/33، 79/21 و 6/15 میلیمتر می باشد. همچنین بر اساس شاخص mse2 مشخص شد مدل پیشنهادی در ایستگاه های اهواز، شیراز و تبریز بیش برآورد بوده و تنها در ایستگاه کرج مدل پیشنهادی کم برآورد می باشد. نتایج حاصل از روش رگرسیون چندگانه نشان داد که در ایستگاه کرج دمای حداکثر، ایستگاه تبریز سرعت باد، ایستگاه شیراز دمای حداقل مقدار p-value برابر 03/0، 04/0، 1/0می باشد که بیانگر اینست که این عوامل نسبت به سایر عوامل مورد بررسی تاثیر بیشتری بر روی تبخیر از تشت داشته است.
منابع مشابه
مقایسه روشهای شبکه عصبی مصنوعی و رگرسیون چندگانه در برآورد تبخیر از تشت و تعیین مهم ترین عوامل هواشناسی موثر به روش تحلیل مولفههای اصلی
میزان تبخیر از تشت یکی از عوامل بسیار مهم در برنامه ریزی منابع آب، مدیریت آبیاری و تولیدات زراعی میباشد.. بسیاری از ایستگاههای هواشناسی کشور فاقد آمار طولانی مدت و همگن تبخیر از تشت میباشند. لذا مدلهای تجربی مختلفی به منظور برآورد این کمیت مورد استفاده قرار میگیرد. هدف از انجام این تحقیق، برآورد تبخیر از تشت در چهار ایستگاه سینوپتیک کرج، اهواز، شیراز و تبریز در بازه زمانی 1986 تا 2005 با اس...
متن کاملبرآورد تبخیر از تشت تبخیر ایستگاه سد تنظیمی دز با استفاده از روش شبکه عصبی مصنوعی
بیشتر بارندگی مناطق خشک و نیمه خشک بصورت تبخیر به جو باز می گردد پس تخمین تبخیر دربرآورد میزان آب در چرخه آب مهم خواهد بود. تبخیر وابسته به پارامترهای مختلفی است و برای برآورد آن نیاز به متغیرهای اقلیمی متفاوتی است و اثر متقابل این متغیرها بسیار پیچیده است لذا در بررسی آن باید روشهای دقیقی را بکار گرفت. در این تحقیق برای برآورد تبخیر از تشت ایستگاه سد تنظیمی دز از روش شبکه عصبی مصنوعی استفاده ش...
متن کاملمدل شبکه عصبی مصنوعی تبخیر ماهانه از تشت با استفاده از داده های هواشناسی- مطالعه موردی منطقه حاشیه دریای خزر
تبخیر یکی از مؤلفههای اصلی چرخه آب در طبیعت بوده و تعیین دقیق آن برای بسیاری مطالعات مثل بیلان آبی حوزه، طرح ریزی و مدیریت منابع آب حائز اهمیت است. تبخیر به دلیل اثرات متقابل عوامل متعدد اقلیمی، پدیده پیچیده و غیر خطی است و لذا برای تخمین آن باید از مدلهای پیشرفته استفاده کرد. در این تحقیق، هشت نوع ترکیب پارامترهای هواشناسی بعنوان دادههای ورودی برای برآورد تبخیر از تشت با استفاده از شبکهها...
متن کاملمقایسه روش های طبقه بندی، شبکه عصبی مصنوعی و رگرسیون چندمتغیره در برآورد بازیابی فلز از بلوک کانسنگ
با توجه به نقش بازیابی در محاسبه ارزش اقتصادی بلوک کانسنگ و تأثیر مقدار این ارزش بر محاسبات طراحی و برنامهریزی تولید معدن، تعیین بازیابی فلز از بلوک کانسنگ ارسالی به کارخانه فرآوری، از اهمیت بالایی برخوردار است. هدف از این پژوهش، بررسی قابلیت برآورد بازیابی بلوک کانسنگ به<span lang="AR-SA" dir="R...
متن کاملبرآورد دمای خاک از دادههای هواشناسی با استفاده از مدلهای یادگیری ماشین سریع، شبکه عصبی مصنوعی و رگرسیون خطی چندگانه
دمای خاک عامل کلیدی است که فرآیندها و خصوصیات فیزیکی، شیمیایی و بیولوژیکی خاک را کنترل میکند؛ لذا بر کمیت و کیفیت تولید محصولات کشاورزی تأثیر میگذارد. هدف از انجام این پژوهش برآورد دمای خاک با استفاده از پارامترهای هواشناسی به روشهای مختلف ماشین یادگیری بوده است. بدین منظور دادههای هواشناسی و دمای خاک در عمقهای 5، 10، 20، 30، 50 و 100 سانتیمتری از 17 ایستگاه سینوپتیک استان خوزستان مربوط ...
متن کاملمقایسه ضرایب تشت برآورد شده با استفاده از روش های تجربی، شبکه عصبی مصنوعی و عصبی- فازی در برآورد تبخیر و تعرق گیاه مرجع
در این تحقیق کارایی روش های متفاوت تجربی (کوینکا، اشنایدر، اورنگ، آلن و پرویت، مدل راگووانشی و والندر، اشنایدر اصلاح شده، پریرا) در مقایسه با شبکه عصبی مصنوعی (ann) و سامانه استنتاج عصبی- فازی تطبیقی (anfis)در برآورد ضریب تشت رده a و تبخیر و تعرق گیاه مرجع، در یک اقلیم گرم و خشک مورد ارزیابی قرار گرفت. بدین منظور از آمار 10 ساله مربوط به اندازه گیری روزانه تبخیر از تشت استفاده شد. با توجه به کم...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
پژوهش های آبخیزداریجلد ۲۸، شماره ۱، صفحات ۴۱-۵۱
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023